The Data Prep Kit (DPK) framework enables scalable data transformation using Python, Ray, and Spark, while supporting various data sources such as local disk, S3, and Hugging Face datasets. It defines abstract base classes for transformations, allowing developers to implement custom data and folder transforms that operate seamlessly across different runtimes. DPK also introduces a data abstraction layer to streamline data access and facilitate checkpointing. To support large-scale processing, it provides three runtimes: Python for small datasets, Ray for distributed execution across clusters, and Spark for highly scalable processing using Resilient Distributed Datasets (RDDs). Additionally, DPK integrates with Kubeflow Pipelines (KFP) for automating transformations within Kubernetes environments. The framework includes transform utilities, testing support, and simplified APIs for invoking transforms efficiently. By abstracting complexity, DPK simplifies development, deployment, and execution of data processing pipelines in both local and distributed environments.